
;^1»

Knowledge-Based Integration of IU Algorithms

Chandra Shekhar Shyam Kuttikkacl Rama Chellappa

Computer X'ision Laboratory
Center lor Automation Research

University of Maryland
College Park. AID 20742-3275

Monique Thonnat

INRIA Sophia-Antipolis
2004 Route des Lucioles

BP 93. 06902 Sophia-Antipolis Cedex
 France

ssaE

*,,tv.V''<',y'.tf ?,;'iV

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND"

20742-3275 < ,

"*-» -«?••
^«^i«*«^

•iii.

DISCLAIMS! NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

CAR-TR-804 N00014-95-1-0521
CS-TR-3578 December 1995

Knowledge-Based Integration of IU Algorithms

Chandra Shekhar Shyam Kuttikkad Rama Chellappa

Computer Vision Laboratory
Center for Automation Research

University of Maryland
College Park, MD 20742-3275

Monique Thonnat

INRIA Sophia-Antipolis
2004 Route des Lucioles

BP 93, 06902 Sophia-Antipolis Cedex
France

Abstract

This paper deals with the integration of image understanding (IU) programs using a
knowledge-based approach. The basic concepts of program integration are discussed, and a
simple problem-solving model for program integration is outlined. Two types of reasoning,
planning and execution control, are identified. A system developed using this model, called
OCAPI (Optimizing, Controlling and Automating the Processing of Images), is introduced.
OCAPI is in an AI environment in which the reasoning used by the IU specialist is formally
represented using frames and production rules. An example of an application developed using
OCAPI is presented, and the advantages and shortcomings of this approach are discussed.

19960430 078
Apjgcoved tor pufoüs rsisog®?

mnnm^

The support of the Office of Naval Research under Grant N00014-95-1-0521, and the Advanced Research
Projects Agency (ARPA Order No. C635) is gratefully acknowledged, as is the help of Sandy German in
preparing this paper.

1 Introduction

In any rapidly-evolving field of research such as image understanding (IU), the development

of new methods is often far ahead of their actual use in real applications. New methods

continue to proliferate, each with its own advantages, disadvantages, constraints, and areas

of applicability. These new techniques, if used correctly, can often provide solutions that are

robust, efficient, and adaptive. Unfortunately, they also tend to be difficult to understand

and utilize because of their complexity. Consequently, the real users of IU methods, who

are often non-specialists, may not be able to use them effectively. There is thus a wide gulf

between specialists and end-users of IU algorithms.

To provide users with greater flexibility and power in solving their problems, program

integration systems have been developed. These systems range from graphical script gen-

erators, to IU toolkits, to object-oriented protocols for data and program interchange. The

emphasis is on abstracting the types of objects and computational geometries used in image

understanding into useful programming constructs [4]. One of the objectives is to enable

the rapid design of algorithms using a tool-box of pre-existing constructs, and prototyping

of longer processing chains by linking simpler elements together. The user is often provided

with a visual programming environment (VPE), which enables him to mix and match the

available methods. For the most part, these systems offer only syntactic integration of IU

programs. They provide a means of integrating code and usage syntaxes, but they do not

incorporate knowledge about the programs.

The task of solving an IU problem using a computer may involve complex decision making

at various levels, for which IU expertise may be necessary. Very often a number of stages of

processing may have to be linked together to achieve the desired IU objective. At each of

these stages, there may be a number of possible methods, from which the most appropriate

one has to be selected. A method may have one or more parameters, which have to be

initialized before execution. Often, due to uncertainty in the data and in the problem model,

it may be necessary to start with a rough guess of the parameters, execute the algorithm,

examine the results, and if necessary, modify the parameter values, and repeat the procedure

until results of the desired quality are obtained.

It is clear from the above remarks that purely syntactic integration is inadequate for

effective problem-solving in IU. In this paper, we focus on semantic integration of IU proce-

dures. The goal of such systems is not merely to provide a few basic IU tools and a graphical

interface for generating scripts, but to enable the formal and precise representation of the

problem-solving expertise of the IU specialist, and to emulate the strategy used by an expert

in employing available IU programs. The objective of automatic supervision of programs is

to maximally automate an existing processing activity, so that the intervention of the spe-

cialist during the use of the programs is minimized or even completely eliminated. The user

is thus freed from the necessity of going through the same kind of reasoning as the specialist

does, in order to make the IU programs work in his application. Semantic integration can

be viewed as a means of achieving automatic supervision. In the rest of this paper, these

two terms are used interchangeably.

It is obvious from the preceding discussion that a formal and structured software architec-

ture is necessary to integrate and automate IU algorithms. OCAPI (Optimizing, Controlling

and Automating the Processing of Images) is one such architecture. In this paper, we de-

scribe the basic principles of algorithm integration, the OCAPI architecture [5], and the

integration of an IU problem (in SAR ATR) using OCAPI.

2 Previous Work

The use of a knowledge-based approach to the integration of IU methods is a relatively

recent phenomenon. In Japan, considerable effort has been devoted to this problem, both in

research laboratories and in industry [9, 14, 15].

In Europe, this problem was addressed in the context of the VIDIMUS project [1,3], with

the aim of developing an intelligent IU environment for industrial inspection. A knowledge-

based system (VDSE) was built within this environment, which can automatically configure

a vision system for a given inspection problem. More recent work in which a multi-specialist

architecture is used for aerial image interpretation is reported in [17]. In this system, a

scene specialist carries out various strategies for scene interpretation, employing a number

of semantic object specialists to detect specific types of objects such as rivers and roads.

These semantic object specialists, in turn, use a library of low-level specialists which perform

specific image processing tasks such as edge detection. A global conflict specialist resolves

the various conflicts that may arise between the results obtained by the semantic object

specialists. The whole scheme is embedded in a blackboard architecture.

In the US, early work on this problem is reported in [2], and also in [7] in the context of

a specific application (astronomical data analysis).

More recent work in the US has focussed on context-based vision, where the basic aim is

to use contextual information to select methods and parameters in an IU application. Strat

[11] provides a taxonomy of contextual information commonly available in an IU application.

He identifies three types of context: physical, photogrammetric and computational. Physical

context refers to information about the visual world that is independent of any particular set

of image acquisition conditions, such as weather conditions, type of scene, etc. Photogram-

metric context is information pertaining to image acquisition, such as camera location, image

resolution, etc. Computational context is the internal state of the processing. These three

types of context can be used to compute parameters, to guide search, to cue recognition

processes, etc. Further, [11] stresses the need for explicitly encoding semantic knowledge

about IU algorithms such as assumptions about their use and their inherent limitations.

These ideas are implemented in the fully autonomous CONDOR system [12], as well as in

the Radius HUB architecture for semi-automated image analysis [10].

3 A problem-solving model for algorithm integration

In this section we examine the strategies used by an IU specialist in solving a given IU

problem. We are not interested in the design of IU algorithms—we assume that the necessary

programs or libraries of IU methods are already available. We roughly classify the specialist's

tasks as follows.

1. Selection of basic elements (programs or methods),

2. Assembly of basic elements (scheduling of processes),

3. Generation of commands or code,

3

4. Execution of programs,

5. Monitoring of results,

6. Optimization of processing.

The reasoning used by the expert in performing the above tasks can be separated into

reasoning for planning and reasoning for execution control. The problem-solving model is

shown echematically in Figure 1. This model gives us a way of comparing systems for

semantic integration of programs.

context

input data output data

Figure 1: The basic problem-solving model for program integration

4 The OCAPI architecture

OCAPI is an AI environment based on the model shown in Figure 1. It uses frames and

production rules as knowledge representation schemes. The main components of this archi-

tecture, and the relationships between them, are shown in Figure 2. The functions of each

component are explained in this section.

Request-1

goal: Goal-1
data:
parameters:
other constraints:

' /
Goal-1 /

/

description:
/ /

input data:

output data:

/ ,*

"».
parameters: ^-
available operators:

Choice Evaluation
rules rules

4
I
i
I

4
Operator-1.1

/
t goal: Goal-1

/ / input data:
/ / output data:

y

/ parameters:
characteristics:
use:

Initialization Adjustment
rules rules

i- Operator-1.n

goal: Goal-1
input data:
output data:

parameters:
characteristics:
decomposition:

 > Request 1
i 7* Request 3 >-

 » Request 2

Initialization

rules
Adjustment

rules

Figure 2: Relationships between the various entities in OCAPI

Problem description

Knowledge about IU methods is expressed at two levels of abstraction. A goal is the abstract

form of an IU functionality, which is realized in a more concrete form by one or more operators

corresponding to it. An operator may be either a simple one, corresponding to an executable

5

program, or a composite one, with a decomposition into sub-parts. A request consists of the

data and the type of processing to be done on them, and other constraints. All available

contextual information about the problem, such as user specifications, types of sensors used,

etc, is stored in the context. Goals, operators, requests and context are represented as frames.

These frames and their inter-relationships are shown in Figure 2.

Planning

The basic planning mechanism provided is hierarchical script-based planning [6]. A plan is

a set of steps to attain the desired IU objective. It is similar to the block schematics often

used in the design of IU algorithms, but is different in two ways:

(a) Plan hierarchy: each "box" in the plan can be a complex IU task, with its own plan,

(b) Plan abstraction: the components of the plan represent abstract IU tasks (goals), and not

specific algorithms or programs. During execution, choice rules are used for selection of the

operator best-suited for the task at hand. They are of the form

if

the data have property x

AND context field f has value y

AND the request has a constraint z

then

choose an operator with characteristic b

AND do not choose operator w

(The above example shows only some of the possible types of premises and actions in a

choice rule. Many other types of premises and actions are possible, for choice rules as well

as for the three other kinds of rules described later.)

Skeletal plans are physically stored in composite operators in the form of decomposition

diagrams, consisting of one or more sub-tasks connected in parallel or in series. These sub-

tasks are treated as requests (and not goals or operators) since the data flow between the

sub-tasks of a composite operator is known.

6

Execution control

Execution control, in this architecture, can be described as the task of executing a plan,

making it work on the given data and in the given context. Initialization rules are used to

set the initial values of the parameters. They are of the form

if

the data have property x

AND context field f has value y

then

set parameter p to value f(y)

The performance of an IU request after execution is analyzed using evaluation rules, which

are of the form

if

the output does not satisfy criterion c

then

declare that the quality q of the results is unsatisfactory

declare failure of execution

The re-processing strategy consists of adjustment rules for operators, of the form

if

quality q of the results was declared unsatisfactory

then

adjust parameter p using method m

Planning and execution control are interleaved in the sense that choice rules may be re-

applied if operator adaptation does not produce the desired results. The different kinds of

rules and their relationships to the other objects in the architecture are shown in Figure 2.

Building a knowledge base

In order to solve a given problem or set of problems the specialist's knowledge about the

problem and the methods used to solve it are expressed using the mechanisms discussed in

the preceding subsections.

The first step is the building of task blocks, which are combinations of goals and the

associated operators. Corresponding to each problem type, a goal instance is created. The

specialist may have one or more different ways of fulfilling a chosen goal, and for each one

an operator instance is created and linked to the goal. For a simple operator, the necessary

information about the program which corresponds to it is entered into its "use" field. If the

operator is a composite one, with a decomposition into one or more parts, task blocks have to

be created for each sub-problem type, unless they have already been created. The procedure

of defining task blocks is carried out for all problems, all sub-problems, ... until each simple

operator is linked to a program, and task blocks have been defined for each sub-problem of

every composite operator.

The ensemble of the task blocks of a problem constitute the static part of the knowledge

base. The next step is the creation of the rules which express the strategy of the specialist

in executing a plan. This is a more difficult phase than the previous one, but is crucial to

the success of the entire approach to problem-solving. It is difficult because, as in many

other engineering disciplines, the specialist's reasoning may not often be easily expressible

in the form of clear-cut rules. It should also be borne in mind that multiple rules will

often be required to provide the required depth of reasoning. These inherent difficulties

notwithstanding, experience has shown that it is possible to express the specialist's reasoning

in a concrete fashion, provided the representation mechanisms have been correctly chosen.

The OCAPI architecture enables the systematic expression of the "rules of thumb" and

the "approximate reasoning" which are crucial to successful problem-solving. This is done

by means of the four types of rules discussed earlier. A mixture of numeric and symbolic

reasoning may be needed for all four types of rules. Choice rules, being the easiest, are defined

first. They use the values of context fields, data definitions, constraints in the request, etc.

to select an operator from among the choices available. Initialization rules are defined next.

8

These may be somewhat more difficult, in that they have to formalize the "rough initial

guesses" that the specialist makes before starting an IU task. Adjustment rules are then

defined for operators which have adjustable parameters. Step sizes for parameters have to

be carefully chosen so that the change in the behavior of the algorithm is neither too sudden

nor too gradual. Finally, evaluation rules are defined. This is a rather difficult task since

the question "Are the results good enough?" is often subjective, and appropriate quality

measures may not be readily available. However, a close examination of the specialist's

strategy often reveals hidden reasoning capable of being expressed in concrete terms as

evaluation rules.

Algorithm integration using OCAPI

The previous subsection outlines how to build a knowledge base for an application. Here we

describe how an application problem is solved in OCAPI using this knowledge base and the

available methods.

The solving of a problem starts with the creation of a request, which states the goal

required, the data on which this goal is to be achieved, and the context in which the problem

is being solved. (The goal should have already been defined while creating the knowledge

base.) Using choice rules, the available operators for the goal are rank-ordered. The best

operator is selected, and executed on the given data after the operator's initialization rules

have been applied. If the operator is a simple one, this corresponds to the execution of the

corresponding program. If it is a composite one, requests for its sub-tasks are created, and

a tree of requests is created. Requests are chosen from this tree and executed depending

on their sequencing. If the mode of execution control calls for it, the results of executing

a request are judged using evaluation rules, and in the event of a failure, either the same

operator is re-executed after its parameters have been adjusted using the relevant rules, or

the next best operator is applied. In the event of successful execution, the next request in

the tree is selected for execution. This continues, and the execution terminates when the

tree of requests is empty.

5 Example: SAR image analysis

This application is based on the work of Kuttikkad and Chellappa [8]. Its goal is to analyze

a SAR image to identify semantic objects such as targets, buildings, roads, and trees, and

to segment the remaining parts of the image into various categories such as grass, water and

bare ground. The first step is the detection of regions of high backscatter using a Constant

False Alarm Rate (CFAR) technique [8]. In the next step non-target pixels in the image are

classified as grass, tree, bare ground, road or shadow using a Maximum Likelihood (ML)

approach. Training data obtained from other images of similar scenes is employed. This is

a preliminary classification, using no high-level information whatsoever. A large percentage

of pixels are likely to be misclassified.

Shadow regions are detected and then eroded and grown using morphological operations.

The same is done for pixels classified as road. Very small regions of either class are eliminated,

and the rest are grouped into homogeneous regions. Shadow regions that are adjacent to a

bright streak (in the CFAR output) extending toward the sensor are classified as building

shadows. Roads are verified using a shape/size criterion. ML segmentation is then repeated

for pixels previously misclassified as road and shadow, this time classifying them as grass,

bare ground or trees. Tree regions are grown using morphological operations, and verified

using a size argument, as well as by the presence of adjoining shadow regions extending away

from the sensor. In the CFAR output, streaks corresponding to buildings are eliminated,

and the remaining target pixels are grouped into clusters. In the final step, ML segmentation

is repeated, and based on the previous steps, pixels misclassified as shadow, road or tree are

re-classified into grass or bare ground.

Examples of results obtained by the approach are shown in Figure 3.

Knowledge base

The hierarchy of goals for the SAR application is shown in Figure 4. The knowledge base

consists of the following major components: 18 goals, 19 operators (13 simple and 6 compos-

ite), and 24 production rules (2 choice rules, 2 initialization rules, 7 evaluation rules and 11

adjustment rules). This knowledge base is currently under development, and more objects

10

mi

c o
ü
0)

■*

TJ
tc
< u.
o

ML segmentation

yu

n A

target detection

^

*-:"Jvi * * '-:t5^
**- .2. ifci.^:

***^?? slttk
".■ Bllll &0|

-* „
;£-'- ' .*'•■*.

* " -^"W
iiiiii ̂ vVv""* "«*,•■

Building

Clearing

Ontew

Taiget

Figure 3: Examples of results of SAR image analysis.

are likely to be added to it. The complete knowledge base will not be described in detail in

this paper. Instead, some simple examples from the KB are presented to give the reader a

feel for the kinds of objects and reasoning involved in a real application.

The context frame for this application is shown in Figure 5.

An example of a goal is shown in Figure 6. The goal is road verification, which verifies road

hypotheses obtained by pixel classification and region growing. An operator corresponding

to this goal is shown in Figure 7. This is a simple operator, which has characteristics

11

SAR image understanding

target
detection

preliminary
segmentation

CFAR CFAR filtering
defection refinement

target fjnaj
verification segmentation

streak filtering grouping
removal

shadow
detection

ML shadow
segmentation growing

building
detection

road
detection

tree
detection

streak
detection

building
verification

road
extraction

road
verification

ML road region
segmentation growing

road road
verification verification

(length based) (support based)

Figure 4: Goal hierarchy for SAR image analysis.

"length-based" and "fast".

There are two operators corresponding to the goal in Figure 6, and two choice rules are

provided to help choose the best operator, one of which is shown in Figure 8. The reasoning

is as follows: in rural areas, roads are likely to have longer unbroken stretches, whereas roads

in urban areas have many intersections. Hence an operator for verifying road hypotheses in

rural areas should use length as a criterion.

An example of an initialization rule for the parameter PFA (probability of false alarm)

for the operator "o-cfar" is shown in Figure 9. This operator corresponds to the goal

target-detection, whose function is to detect targets in the SAR image. The parameter

PFA is a threshold which determines the number of bright pixels that are classified as target

pixels. The higher the PFA, the more likely it is that a given pixel is classified as a target

12

segmentation
quality jj~

SAR-format
targets

exp e c ted-numb er
expected-size

polarimetry
channels
type

noise [
resolution
image-dimensions

hsize
vsize

scene-type

igh, medium
DATS/ SENSCI, 8bit

one, tew, many, group, unknown
Lny, small, medium, bio, mixed.

linear, circular
ligh, medium, low, unknown,

foot, meter

jrban, rural, unknown

Figure 5: Context structure for SAR image analysis

Name : |road-verification
Comment :|verify road hypotheses

Input Data
r o ad-r e gi on-image
morph-file

Parameters
aspect
fill-ratio

Output Data
road-image

Choice Rules
ch-r o ad-ve r i fy-1
ch-road-verify-2

Evaluation Rules
Operators

o-road-verify-1
o-road-verify-2

Figure 6: Example of an OCAPI goal

pixel. An example of an evaluation rule for this goal is shown in Figure 10. The user is

asked to judge if the result of target detection are satisfactory. If not, appropriate action is

taken via an adjustment rule, such as the one shown in Figure 11. An example of this chain

of reasoning is shown in Figure 12.

13

: |o-road-verify-l" Name
Goal

Comment :[Extended fill method
road-verification

road-region-image
morph-file

1 Loop maxima
Max-convergenee-nb
Max-optimisation-nb :

Characteristics
Characteristics : length- -based, fast

Input Data

Parameters
aspect
fill-ratio
min-road-length

Output Data
road-image

Initialisation Rules
Adjustment Rules

Call
L anguage: Oshell
Syntax: I ~

(rdtwo road-region-image morph-file road-image

Figure 7: Example of an operator

Name
Linked to : road-verification

ch-r o ad-ve r i fy-1

Comment :|Roads is rural areas have longer unbroken stretches,
Premisses

Actions

1 |(is-context '(scene-type)'rural)

1 | (use-op-iffith-characteristic 'length-based)

Figure 8: Example of a choice rule

6 Discussion and Conclusion

This paper highlights the need for knowledge-based systems for semantic integration of IU

procedures, the goal of such systems being the partially or fully automatic supervision of

these procedures in the context of real-life applications. One such system, OCAPI, was

described along with an example of an application built using it. Other existing knowledge-

based approaches were also reviewed.

14

Name : mit-PFA-1
Linked to : o-cfar
comment :Initialise PFA heuristically
Preim ^P^ •

1 |(is-context '(noise) 'low)

Actions
1 (initialise 'PFAl.Oe-4)

Figure 9: Example of an initialization rule

Name : ev-target
Linked to : target-detection
Comment :|Ask the operator to -judge if the number of target pixels looks ok
Premisses :

Actions

IF

1 [(judge-global-by-user 'num-target-pixels ' (correct too-low too-high))

Figure 10: Example of an evaluation rule

Although these systems are a significant step forward, the problem of semantic integration

is far from being solved. One major difficulty is in expressing the expertise of the specialist

in the form of concrete rules and other knowledge structures. It is helpful to have an overall

structure for the integration system that closely matches the nature of the problem domain.

This enables the representation of expertise in a natural fashion.

Name : |adj-PFA-l
Linked to : o-cfar
Comment :|If # target pixels is too low, increase PFA
Premisses

Actions

1 |(judge-global? 'num-target-pixels 'too-low)

1
2
3
4
5

(ajust-by '% 'PFA)
(%-step 'PFA 400.)
(%-min 'PFA 1.0e-6)
(%-max 'PFA 1.0e-2)
(increase 'PFA)

Figure 11: Example of an adjustment rule

15

;7T^T?*7i

!ü'^:'.^
rule init-PFA-1 is applied

^^
operator o-target

with parameter
PFA = 0.001

rule eval-target is applied

^
mnm-target-pixels "

user diaiog
correct

r^ too-low
too-high

ok j

cancel J
■

rule adj-PFA-1 is applied

operator o-target
with parameter

PFA = 0.005

► reasoning flow

-*► processing/data flow

*s. - ?y-

■ • il*F ■■■■. <'"7

ih- J - . i= ft- ».-

J *

., .•«, ^ - /> >,
.1 * v -v

Jf ^W .* ' ,'■*

<f ^ W
V ~"5».'"*i.. *• P*

:>>o s.

"* -1'^W

*s. * ->>, .. :\V;'T

•-'^■C .ft , =,-^x

Figure 12: Example of the reasoning used for the target-detection goal

16

The example presented in this paper highlights various interesting aspects of the OCAPI

approach. One important issue is that of reusability of the various components of a knowledge

base, which is a special case of the general problem of software reuse [16]. The hierarchical

structure of an OCAPI knowledge base encourages the development of modular components

that can be later re-used in a different application. For instance, the target-detection goal

and its associated operators and rules could be used independently in a completely different

situation, since all the knowledge needed to use this goal is encoded within it.

As mentioned in the introduction, the ultimate goal of semantic integration is the com-

pletely automatic supervision of programs, but this goal may never be truly attained since

certain stages in the processing may require visual evaluation of results by the specialist.

Further, in complex domains such as IU, the results of a sequence of processing steps and

the accompanying stages of automatic reasoning can never be guaranteed to satisfy the user.

In such situations, a certain amount of interactive problem-solving is inevitable, but in sys-

tems such as the applications built with OCAPI an effort is made to keep this interaction at

the level of the (non-specialist) user rather than at the level of the IU specialist, as illustrated

by the example in Section 5.

At the heart of automatic supervision is a trial-and-error problem solving strategy, where

a certain processing sequence is employed, based on all available prior knowledge about the

problem and its context, and is then fine-tuned "on the fly" to produce optimal results. The

performance of this trial-and-error strategy can be greatly enhanced if the system learns

from its past experience. Preliminary work on incorporating a learning module in OCAPI is

reported in [18].

OCAPI was developed as a general architecture for program supervision, and as such it

does not provide many mechanisms for reasoning about the content of images. There are

no tools for representing and reasoning about common semantic objects such as lines and

regions. OCAPI, being a general-purpose system, reasons more in terms of programs and

parameters than in terms of image and scene objects. This latter kind of reasoning would be

useful for image analysis where typically one starts with a raw image and progressively builds

a symbolic representation of its contents. A hybrid system could be imagined consisting of

two knowledge-based systems, one for program supervision, and the other specifically for

17

high-level interpretation. This would have the advantage of separating the two types of

reasoning. An example of such a system is described in [13]. This is in contrast to the

approach in [17] where both types of reasoning are used in the same framework. It remains

to be seen which of the two approaches is more suitable for general IU problems.

Acknowledgments

The work discussed in this paper resulted from the efforts of many researchers. We gratefully

acknowledge the contributions and assistance of Sabine Moisan, Regis Vincent, John van den

Eist, and many others. We would also like to thank Hany Tolba for his helpful comments

about this paper, and Dr. Les Novak of MIT Lincoln Laboratories for the SAR image used

in the examples.

References

[1] "VIDIMUS Esprit Project Annual Report," Technical Report, British Aerospace,

Sowerby Research Centre, Bristol, England, 1991.

[2] D.G. Bailey, "Research on computer-assisted generation of image processing algo-

rithms," in Proceedings, IAPR Workshop on Computer Vision—Special Hardware and

Industrial Applications (Tokyo, Japan), Oct. 1988.

[3] R. Bodington, "A software environment for the automatic configuration of inspection

systems," in First International Workshop on Knowledge-Based Systems for the (re) Use

of Program Libraries (Sophia Antipolis France), Nov. 1995.

[4] C.C. McConnell and D.T. Lawton, "IU software environments," in Proceedings of the

DARPA Image Understanding Workshop, pp. 666-676, April 1988.

[5] V. Clement and M. Thonnat, "A knowledge-based approach to the integration of image

processing procedures," CVGIP: Image Understanding, Vol. 57, pp. 166-184, 1993.

[6] J. Hendler, A. Täte, and M. Drummond, "AI planning: Systems and techniques," AI

Magazine, Vol. 11, No. 2, pp. 61-77, 1990.

18

[7] M. Johnston, "An expert system approach to astronomical data analysis," in Proceed-

ings, Goddard Conference on Space Applications of Artificial Intelligence and Robotics,

pp. 1-17, 1987.

[8] S. Kuttikkad and R. Chellappa, "Building wide area 2D site models from high reso-

lution polarimetric synthetic aperture radar images," Technical Report CAR-TR-776,

Computer Vision Laboratory, University of Maryland, College Park, MD, June 1995.

[9] H. Sato, Y. Kitamura, and H. Tamura, "A knowledge-based approach to vision algo-

rithm design for industrial parts feeder," in Proceedings, IAPR Workshop on Computer

Vision, Special Hardware and Industrial Applications (Tokyo, Japan), pp. 413-416, Oct.

1988.

[10] T. Strat, "Integrating IU algorithms into the RADIUS HUB." Software documentation.

[11] T. Strat, "Employing contextual information in computer vision," in Proceedings of the

DARPA Image Understanding Workshop (Washington, DC), April 1993.

[12] T. Strat and M.A. Fischler, "Context-based vision: Recognizing objects using both 2D

and 3D imagery," IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 13, pp. 1050-1065, 1991.

[13] M. Thonnat, V. Clement, and J.C. Ossola, "Automatic galaxy description," Astrophys-

ical Letters and Communication, Vol. 31, 1995.

[14] T. Matsuyama, "Expert systems for image processing: Knowledged-based composition

of image analysis processes," Computer Vision, Graphics, Image Processing, Vol. 48,

pp. 22-49, 1989.

[15] T. Toriu, H. Iwase, and M. Yoshida, "An expert system for image processing," Fujitsu

Sei. Tech. Journal, Vol. 23.2, pp. 111-118, 1987.

[16] J. van den Eist, F. van Harmelen, and M. Thonnat, "Modeling software components for

reuse," in Seventh International Conference on Software Engineering and Knowledge

Engineering (Rockville, MD), pp. 350-357, June 1995.

19

[17] V. Clement, G. Giraudon, S. Houzelle, and F. Sandakly, "Interpretation of remotely

sensed images in the context of multi-sensor fusion using a multispecialist architecture,"

IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, pp. 779-791, July 1993.

[18] R. Vincent, S. Moisan, and M. Thonnat, "Learning as a means to refine a knowledge-

based system," in Proceedings of the Third Japanese Knowledge Acquisition for

Knowledge-Based Systems Workshop (Hatoyama, Japan), pp. 17-31, Nov. 1994.

20

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden tor this collection of information 15 estimated to average 1 hour oer resoonse. including the time for reviewing instructions, searching e»uting data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of thn
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports 1215 Jefferson
Oaws Highway. Suite 1204. Arlington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington OC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

- December 1995

3. REPORT TYPE AND DATES COVERED

Technical Report
4. TITLE AND SUBTITLE

Knowledge-Based Integration of IU Algorithms

S. FUNDING NUMBERS

N00014-95-1-0521 6. AUTHOR(S)

Chandra Shekhar, Shyam Kuttikkad, Rama Chellappa, and Monique Thonnat

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES)

Computer Vision Laboratory
Center for Automation Research
University of Maryland
College Park, MD 20742-3275

8. PERFORMING ORGANIZATION
REPORT NUMBER

CAR-TR-804
CS-TR-3578

9. SPONSORING /MONITORING AGENCY NAME(S) AND AOORESS(ES)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5660

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release.
Distribution unlimited.

12b. DISTRIBUTION COOE

13. ABSTRACT (Maximum 200 words)

This paper deals with the integration of image understanding (IU) programs using a knowledge-based approach. The
basic concepts of program integration are discussed, and a simple problem-solving model for program integration
is outlined. Two types of reasoning, planning and execution control, are identified. A system developed using this
model, called OCAPI (Optimizing, Controlling and Automating the Processing of Images), is introduced. OCAPI
is in an AI environment in which the reasoning used by the IU specialist is formally represented using frames and
production rules. An example of an application developed using OCAPI is presented, and the advantages and
shortcomings of this approach are discussed.

1«. SUBJECT TERMS

Image understanding, program integration, planning, execution control, OCAPI,
SAR imagery

15. NUMBER OF PAGES

24
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

TTNflT.ASSTFTFX»

18. SECURITY CLASSIFICATION
OF THIS PAGE

TINf!LARRTFTF,n

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNOLASSTFTFD

20. LIMITATION OF ABSTRACT

TIL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

